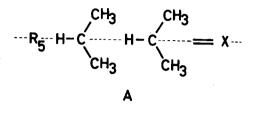
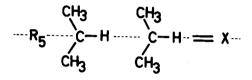
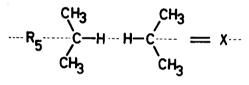

THE GEAR EFFECT IV: CONFORMATIONAL ANALYSIS OF THREE 3,4-DIISOPROPYL-5-METHYLTHIAZOLE DERIVATIVES*

A. Lidén,^a C. Roussel,^b M. Chanon,^c J. Metzger^b and J. Sandström^a

^aDivision of Organic Chemistry, Chemical Center, University of Lund, P.O.B. 740, S-220 07 Lund 7, Sweden


^bI.P.S.O.I., Université Aix Marseille III, St. Jérome, 13013 Marseille, France ^CEcole Normale Supérieure, 14 Bd de la Liberté, Le Bardo, Tunis, Tunisie (Received in UK 8 August 1974; accepted for publication 29 August 1974)


It has been shown by strain energy calculations that 3,4-diisopropylthiazoline-2(3)-thione (I) has three energy minima with respect to the rotation of the isopropyl groups (A, B and C in the Figure). Below -10° C, distinct nmr spectra were observed for two species, which were assigned to the conformations A and B with the aid of chemical shift arguments, especially the extreme low-field resonance of the 3-methine proton in B (δ = 6.03 ppm compared to 4.70 ppm in A).


Part III: C. Roussel, M. Chanon and J. Metzger, FEBS Letters 29, 253 (1973).

We now wish to report three cases (II-IV), where three different rotamers have been observed, which are assigned by low-temperature 1 H nmr to the conformations A, B and C.

B

С

FIGURE. Conformations' of isopropyl groups viewed along the plane of the ring.

In II, the 5-methyl signal is a singlet at ambient temperature, which splits below -40° C into an unsymmetrical doublet with the stronger signal at higher field. On decreasing the temperature further, a decoalescence of the high-field signal into a doublet occurs below ca -50° C, with the low-field, low-intensity component only 0.022 ppm up-field with respect to the previous low-field component. It has been shown that conformation B leads to a less shielded 5-methyl group than conformation A,² and the situations in B and C with respect to the 5-methyl group should be quite similar. Thus, the two low-field signals are ascribed to conformations B and C and the high-field signal to conformation A. According to the semiquantitative calculations described in Ref. 1, the direct exchange between A and B requires much higher energy than the exchange A \rightleftharpoons C \rightleftharpoons B, and the temperature-dependence of the spectrum is in agreement with this picture. The barriers calculated for the shifts B \rightleftharpoons (A + C) and A \rightleftharpoons C are found in the Table together with chemical shifts and populations.

Compound	v _A Hz	ν _B Hz	ν _C Hz	₽ _A	р _В	р _С	∆G [‡] kcal/mol (T K)	
							$B \rightarrow (A + C)$	A → C
II	206.3	217.8	215.6	0.67	0.10	0.23	13.4 (244)	11.7 (226)
III	250.8	262.0	260.1	0.37	0.47	0.16	15.7 (298)	12.0 (226)
IV IV	211.7 325.9 ^a	226.3 3 55.8 ^a	221.6 338.7 ^a	0.12	0.82	0.06	16.5 (299)	11.9 (226)

TABLE

Spectra recorded at 100 MHz in CHCl₂F with TMS as internal standard.

^a Chemical shifts of 4-methine protons. The other shifts are of 5-methyl protons.

The nmr spectra of the 5-methyl group in the thiazolium salt III show a similar behaviour, only with rather different populations (Table). Also in this case the signals ascribed to conformations B and C appear close together ($\Delta\delta$ = 0.016 ppm) and at low field.

The 5-methyl group in the thiazoline-thione IV gives rise to a doublet below ca 26° C. In the temperature range -40° C to -70° C the high-field, low-intensity signal shows exchange broadening and splits in the same way as described before. By irradiation of the resonance frequency of the methyl protons in the 4-isopropyl group, it was possible to observe an analogous temperature-dependence of the spectrum of the 4-methine proton.

The great similarity of the A \rightleftharpoons C barriers is in satisfactory agreement with the proposed process with only the 4-isopropyl group rotating. The barriers to the B \rightleftharpoons (A + C) exchange process are, as expected, much more dependent on the size of the 2-substituent. The relative populations of rotamers A, B and C reflect the effective size of the 2-substituent but also the lengths of the C₂-X and C₂-N₃ bonds.

Siddall and Stewart³ report three different signals for the cis (Z) benzhydryl methine proton in N-isopropyl-N-benzhydrylisobutyramide. However, the model used by Siddall and Stewart has been criticized,^{2,4} and it is probable that the three species they observe are better described by conformations similar to A, B and C. <u>Acknowledgements</u>. We are grateful to <u>C.N.R.S.</u> de France (International A.T.P. no 9111) and to the Swedish Natural Science Research Council for financial support.

REFERENCES

- 1. C. Roussel, M. Chanon and J. Metzger, Tetrahedron Letters 1971, 1861.
- 2. C. Roussel, M. Chanon and J. Metzger, Tetrahedron Letters 1972, 3843.
- 3. T.H. Siddall, III and W.E. Stewart, J. Chem. Phys. <u>48</u>, 2928 (1968).
- K.C. Ramey, D.J. Louick, P.W. Whitehurst, W.B. Wise, R. Mukherjee, J.F. Rosen and R.M. Moriarty, Org. Magn. Resonance <u>3</u>, 767 (1971).